题目
传说中的暗之连锁被人们称为Dark。Dark是人类内心的黑暗的产物,古今中外的勇者们都试图打倒它。经过研究,你发现Dark呈现无向图的结构,图中有N个节点和两类边,一类边被称为主要边,而另一类被称为附加边。Dark有N – 1条主要边,并且Dark的任意两个节点之间都存在一条只由主要边构成的路径。另外,Dark还有M条附加边。
你的任务是把Dark斩为不连通的两部分。一开始Dark的附加边都处于无敌状态,你只能选择一条主要边切断。一旦你切断了一条主要边,Dark就会进入防御模式,主要边会变为无敌的而附加边可以被切断。但是你的能力只能再切断Dark的一条附加边。现在你想要知道,一共有多少种方案可以击败Dark。
注意,就算你第一步切断主要边之后就已经把Dark斩为两截,你也需要切断一条附加边才算击败了Dark。
INPUT
第一行包含两个整数N和M。
之后N – 1行,每行包括两个整数A和B,表示A和B之间有一条主要边。
之后M行以同样的格式给出附加边。
OUTPUT
输出一个整数表示答案。
SAMPLE
INPUT
4 1
1 2
2 3
1 4
3 4
OUTPUT
3
解题报告
第一眼看这题,还以为要用每个点的度来做= =
正经的解法:
求出每条正经的边被多少条附加边(不正经的边?(雾))所覆盖,设其为x
然后对每一条正经的边询问,只有x==0||x==1时,这条边才能被砍(正确性显然,因为如果x>1,你就算砍了它,再砍一条覆盖它的附加边,也没啥用,无法使其不连通)
当x==0时,m条边随便砍,故对答案的贡献为m
当x==1时,只有砍了覆盖它的那条附加边才有用,故对答案的贡献为1
那么问题来了,咋求这个x呢?
显然正经的边形成的是一棵树,那么我们就可以将边权下放到点权(为啥?好算啊= =),这样除了根,每个点都会有点权值,我们就可以用差分的思想来解决这个问题,dfs序跑一遍,修改时LCA-2,两端点+1(想想为什么?差分这东西,就是靠正负的抵消与修改后对区间和的影响来搞的,这样做的目的也就很明显了),那么该点权值自然就为从dfs序左端点到右端点的区间和。剩下的就十分简单了,乱搞出奇迹= =
ps:树状数组比线段树lazy快一万倍= =